
Geometry and Meshing for Simulation Team 
Computer Applications in Science & Engineering (CASE)

Barcelona Supercomputing Center
Barcelona, Spain

Xevi Roca
xevi.roca@bsc.es

http://web.mit.edu/xeviroca/www/index.html

Paralellization of the hybridizable
discontinuous Galerkin method

!

mailto:xeviroca@mit.edu?subject=
http://web.mit.edu/xeviroca/www/index.html

Motivation

`

!

X 10

Challenges: high-fidelity simulation

• Geometrical: accuracy, complexity, curved
boundaries, sharp features …

• Physical: accurate model, boundary layers,
separation, turbulence, …

• Numerical: accuracy, dissipation, dispersion,
condition numbers, convergence, …

• Computational: rate of convergence, 
FLOPS, communication, parallelization, 
memory footprint, … 
 

Re =100000, M=0.2, Mach field

Re =100000, M=0.2, celerity

High-order: low dissipation & dispersion

• Example: Compressible NS & Implicit Large Eddy Sim. (ILES) & high-order & HDG

4

2nd-order in space
2nd-order in time
Dissipates structures !!

4th-order in space
2nd-order in time
Preserves structures

4th-order in space
2nd-order in time
Dissipates sound emissions !!

4th-order in space
4th-order in time
Preserves sound emissions

Re = 100K, M = 0.2  
Same space & 
time resolution

Re = 100K, M = 0.3  
Same space & 
time resolution

with N.C. Nguyen & J. Peraire

•Conditions: Smooth solution, Galerkin & implicit time stepping

•Computational cost: number of floating point operations

•Result: high-order is cheaper for higher accuracies 
[Huerta, Angeloski, Roca, Peraire, IJNME, 2013] 

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104

G
1ite

r /G
pite

r

CG

No overhead
0.0001
0.001
0.01
0.1

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104
HDG

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104

p

CDG

1 2 3 4 5 6 7 8 9 10
10−1

100

101

102

103

104

p

G
1ite

r /G
pite

r

CG(NSC)

High vs. low-order: higher accuracy for a lower cost

5

Example (Linear system). Cost ratio of a GMRES iteration pre-conditioned with
ILU(0) for different degrees and accuracies

Polynomial degree

C
os

t r
at

io
 (l

ow
 /

hi
gh

)

H
ig

h-
or

de
r i

s
ch

ea
p

ex
pe

ns
iv

e

Curved boundaries & mesh quality are critical

• 5th order approximation for inviscid flow:

• Straight-sided impedes convergence: artificial separation & entropy 
(as elucidated first for 2D cases by Bassi & Rebay’97)  

• Low-quality can impede convergence: shape, smoothness, … 

6
convergenceno convergence

↵ = 0,M1 = 0.6, p = 4

Straight-sided: no convergence Curved: convergence Curved: velocity magnitude

same curved boundaries & 
mesh topology

Valid curved mesh of 
sub-optimal quality

Valid curved mesh of 
optimal quality

artificial entropy

Outline

•Motivation: high-fidelity simulation

• The HDG method: suitability to parallelization

• Parallel computing overview

•HDG linear systems

• Parallel HDG solver

• Numerical examples

7

The HDG
method:

suitability to parallelization

The HDG method

9

The HDG method

Derivation of the HDG method for second-order partial di↵erential
equations in conservative form:

First-order problem: introduce the gradient of the conserved
quantities

Finite element spaces: discontinuous on the elements and faces

Inner product: on the element and face spaces

Weak form: Galerkin projection and integration by parts

We will highlight the relation between the derivation and the
parallelization of the method.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 1 / 28

Mesh

10

Mesh

For a domain ⌦, the mesh is composed by discontinuous and curved:

Th: elements,

Eh: faces
Let us denote:

EI
h : interior faces,

EB
h : boundary faces.

Parallel loop. The mesh elements correspond to element-wise loops.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 4 / 28

Approximation spaces: illustration

• `

11

Approximation spaces: illustration

Figure : Element and face nodes for a curved mesh with k = 3.

Functions in Mk
h and Mk

h are continuous inside the faces F 2 Eh
and discontinuous at their borders.

Parallel loop. The local problems are independent since nodal basis
functions on an element are connected only to the basis functions of
the surrounding faces.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 6 / 28

Inner products: element spaces

12

Inner products: element spaces

We introduce the inner products for functions in the element spaces:
�
w1, w2

�
Th

:=

X

K2Th

�
w1, w2

�
K
, for w1, w2 2 Wk

h ,

�
w

1,w2
�
Th

:=

ncX

i=1

�
w

1
i ,w

2
i

�
Th

, for w

1,w2 2 Wk
h,

�
v

1,v2
�
Th

:=

ncX

i=1

dX

j=1

�
v

1
ij,v

2
ij

�
Th

, for v

1,v2 2 Vk
h,

where �
w1, w2

�
K
:=

Z

K

w1w2.

Parallel loop. By definition, the element inner products and their
derivatives are computed element-wise.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 7 / 28

Inner products: face spaces

13

Inner products: face spaces

We introduce the inner products for functions in the face spaces:

⌦
µ1, µ2

↵
@Th

:=

X

K2Th

⌦
µ1, µ2

↵
@K

, for µ1, µ2 2 Mk
h,

⌦
µ

1,µ2
↵
@Th

:=

ncX

i=1

⌦
µ

1,µ2
↵
@Th

, for µ

1,µ2 2 Mk
h,

where ⌦
µ1, µ2

↵
@K

:=

Z

@K

µ1µ2.

Parallel loop. By definition, the face inner products and their
derivatives are computed element-wise.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 8 / 28

HDG method

14

HDG method

Seeks a solution (qh,uh, ˆuh) 2 Vk
h ⇥Wk

h ⇥Mk
h such that 8v 2 Vk

h,
8w 2 Wk

h, and 8µ 2 Mk
h :

rq := (qh,v)Th + (uh,r · v)Th � hˆuh,v · ni@Th = 0,

ru := ↵ (uh,w)Th � (F ,rw)Th +
D
ˆ

F · n,w
E

@Th
� (s,w)Th = 0,

rû :=

D
ˆ

F · n,µ
E

@Th\@⌦
+

D
ˆ

F

b · n,µ
E

@⌦
� hg,µi@⌦ = 0,

where ˆ

F =

ˆ

F (qh,uh, ˆuh) (numerical flux), and ˆ

F

b
=

ˆ

F

b
(qh,uh, ˆuh)

(boundary conditions on �D and �N).

16.930 (MIT) Parallelization of the HDG method May 5, 2013 9 / 28

The HDG
method:

linearization

Residual system

16

Residual system

The weak form corresponds to the non-linear problem (eventually
linear):

rq(qh,uh, ˆuh) = 0, (3)

ru(qh,uh, ˆuh) = 0, (4)

rû(qh,uh, ˆuh) = 0, (5)

Equations (3) and (4): parameterize (qh,uh) in terms of ˆ

uh

element-by-element (locally)

Equation (5): continuity of ˆ

F (globally) and boundary
conditions (ˆF b)

Parallel loop. Grouping by elements, Equations (3) and (4)
correspond to element-wise independent problems.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 11 / 28

Linearization: Newton’s method

17

Linearization: Newton’s method

To solve the residual system we use Newton’s method. At iteration
k + 1, we have to solve the linear system:

2

4
Jqq Jqu Jqû

Juq Juu Juû

Jûq Jûu Jûû

3

5

k

2

4
�q
�u
�ˆu

3

5

k+1

=

2

4
�rq
�ru
�rû

3

5

k

, (6)

where �q, �u, and �ˆu are the degrees of freedom for qh, uh, and ˆ

uh.
To solve the system, we express �q and �u in terms of �ˆu:

�q
�u

�
=

�q(�ˆu)
�u(�ˆu)

�
=

Jqq Jqu

Juq Juu

��1 ✓ �rq
�ru

�
�

Jqû

Juû

�
�ˆu

◆
.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 12 / 28

Parallel
computing

overview

Processor 1 Processor 2 Processor 3 Processor 4

• Several processors computing in parallel and sharing data
through messages

•Basic idea: point-to-point send and receive

• Scatter the vector in blocks of components in different computers

• Each processor computes a block

Parallelization with a cluster: distributed memory

19

u(1) u(2) … u(11)

v(1) v(2) … v(11)
= = = = = = = = = = =

+ + + + + + + + + + +

…

…

…

…

…

…

…

…

u(i)

v(i)

…

…

…

…

u(1)
+

v(1)

u(2)
+

v(2)
… … … … …

u(i)
+

v(i)
… …

u(11)
+

v(11)

Memory 1 Memory 2 Memory 3 Memory 4

Explicit and implicit parallelization

•Explicit parallelization: write the code to perform the tasks in
parallel (OpenMP / CUDA / MPI)

• Example: vector addition code for shared memory, vector processor
and distributed memory

• Implicit parallelization: cast a piece of code to a primitive that
runs in parallel

• Examples:

• Vector-vector, matrix-vector, and matrix-matrix operations (BLAS)

• Solvers for sparse linear systems: direct and iterative

20

Implicit parallelization: available tools

•Multi-threaded basic linear algebra systems (BLAS): ATLAS,
MKL, gotoBLAS, ... 
http://math-atlas.sourceforge.net/  
http://software.intel.com/en-us/intel-mkl

•Multi-threaded direct solvers: UMFPACK, Pardiso, ... 
http://www.cise.ufl.edu/research/sparse/umfpack/ 
http://www.pardiso-project.org/

• Distributed iterative solvers: PETSc, Trilinos, ... (requires MPI
coding)  
http://www.mcs.anl.gov/petsc/  
http://trilinos.sandia.gov/

•MATLAB is multi-threaded:
maxNumCompThreads(numThreads)

• shared memory matrix-matrix product: C = A*B

• shared memory sparse direct solver: x = A\b

21

HDG linear
systems:

local and global problems

23

Linear system in terms of �û (global problem)

Eliminating �q and �u from (6), we obtain the linear system:

H�ˆu = r, (7)

where

H =

⇥
Jûû

⇤� ⇥
Jûq Jûu

⇤ Jqq Jqu

Juq Juu

��1
Jqû

Juû

�
, (8)

r = [�rû]�
⇥
Jûq Jûu

⇤ Jqq Jqu

Juq Juu

��1 �rq
�ru

�
. (9)

The system (7) allows to obtain �ˆu.

Parallel linear solver. Solve the sparse linear system (7) with a solver
that is: direct and multi-threaded, or iterative and distributed.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 13 / 28

24

Element-wise matrix inversion (local problem)

To create H and r we have to compute the inverse of

Jqq Jqu

Juq Juu

�
.

Grouping the degrees of freedom �q and �u by elements, the matrix
becomes block diagonal.

Parallel for. The matrix can be inverted independently for each
element K in Th:

JK
qq JK

qu

JK
uq JK

uu

��1

. (10)

16.930 (MIT) Parallelization of the HDG method May 5, 2013 14 / 28

25

Creation of H and r: element contributions

Parallel for. For each element K in Th:

Compute the elemental: matrices JK
qq, J

K
qu, J

K
qû, J

K
uq, J

K
uu, J

K
uû,

JK
ûq, J

K
ûu, and JK

ûû; and the vectors rKq , r
K
u , and rKû .

Compute

JK
qq JK

qu

JK
uq JK

uu

��1

Compute the element contributions to H and r:

HK
=

⇥
JK
ûû

⇤� ⇥
JK
ûq JK

ûu

⇤ JK
qq JK

qu

JK
uq JK

uu

��1
JK
qû

JK
uû

�
,

rK =

⇥�rKû
⇤� ⇥

JK
ûq JK

ûu

⇤ JK
qq JK

qu

JK
uq JK

uu

��1 �rKq
�rKu

�
.

Parallel (partially) matrix assembler. Multi-threaded or distributed.
16.930 (MIT) Parallelization of the HDG method May 5, 2013 15 / 28

26

Recover �q and �u from �û

Once we have obtained �ˆu from the global linear system, we can
compute �q and �u.

Parallel for. For each element K in Th we compute:

�qK

�uK

�
=

JK
qq JK

qu

JK
uq JK

uu

��1 ✓ �rKq
�rKu

�
�

JK
qû

JK
uû

�
�ˆu@K

◆
. (11)

16.930 (MIT) Parallelization of the HDG method May 5, 2013 16 / 28

HDG linear systems

•HDG discretizations lead to linear systems where matrices are
structured in sparse blocks:

• Non-zero (dense)

• Equal-sized

• Non-overlapped

• Constant number of blocks per row

• Large linear systems due to: fine meshes, high-order, solution
components, spatial dimensions …

• Iterative methods require fast sparse matrix-vector products (for
DG and HDG matrices)

27

Structure of HDG matrices

•Blocks (#face unknowns) x (#face unknowns)

• Face unknowns are coupled if share an adjacent element

• HDG matrices for triangular (tetrahedral) meshes

• 5 (7) blocks per row (inner faces)

• 3 (4) blocks per row (boundary faces) 
 
 
 
 
 
 
 
 
 
 

28

Mesh faces and points Matrix structure

Boundary faces

Inner faces

Parallel HDG
solver (1/2):

parallel pre-conditioner, iterative
solver and distribution

30

Solving HDG linear system: sequential

Algorithm 1: Sequential solve of the HDG linear system
Input: q, u, ˆu
Output: �q, �u, �ˆu

1 begin Compute matrix H and vector r from q, u, ˆu
2 for K in Th do
3 HK , rK Elemental contributions from qK , uK , ˆuK

4 H, r Assemble HK and rK for all K in Th

5 �ˆu Solve H�ˆu = r
6 begin Obtain �q and �u from �ˆu
7 for K in Th do
8 �qK , �uK Recover element solution from �ˆu@K

9 �q, �u Assemble �qK and �uK for all K in Th

16.930 (MIT) Parallelization of the HDG method May 5, 2013 17 / 28

31

Solving HDG linear system: distributed memory

Algorithm 3: Distributed solve of the HDG linear system
Input: q, u, ˆu
Output: �q, �u, �ˆu

1 p Current processor
2 begin Compute distributed matrix H and vector r from q, u, ˆu
3 Gather qK , uK , ˆu@K from q,u,ˆu for all K in Th

p

4 for K in Th
p do

5 HK , rK Elemental contributions from qK , uK , ˆu@K

6 H, r Assemble HK and rK for all K in Th
p

7 �ˆu Distributed solve H�ˆu = r
8 begin Obtain �q and �u from �ˆu
9 Gather �ˆu@K from �ˆu for all for all K in Th

p

10 for K in Th
p do

11 �qK , �uK Recover element solution from �ˆu@K

12 �q, �u Distribute �qK and �uK for all K in Th
p

16.930 (MIT) Parallelization of the HDG method May 5, 2013 19 / 28

32

Required parallel computations

Newton for HDG requires vector updates and, a linear HDG solver:

Element-wise loops: elemental quantities, element inverses (local
problem), element contributions, recovery of �q and �u from �ˆu.

Linear solver
Nested dissection or similar (UMFPACK and Pardiso)

Pre-conditioned GMRES (PETSc and Trilinos)

Gather and distribute vector components (distributed memory)

16.930 (MIT) Parallelization of the HDG method May 5, 2013 20 / 28

33

Required parallel computations

Pre-conditioned GMRES:

GMRES: dot products and sparse matrix-vector products

Pre-conditioner
ILU has a sequential nature (low parallelization)

Additive Schwarz domain-decomposition.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 21 / 28

34

Linear solver: Krylov methods

Krylov methods are projection (Galerkin) methods for solving

Ax = b

They are based on the generation of the Krylov subspace

Kj := span{r0,Ar0,A
2r0, . . . ,A

j�1r0},

where r0 := b�Ax.

Large linear systems: iterative versions (low memory footprint)
with a pre-conditioner.

They require computing matrix-vector products (parallelizable).

Our choice: Generalized Minimal RESidual (GMRES) method
with restart (reduce memory footprint).

16.930 (MIT) Parallelization of the HDG method May 5, 2013 24 / 28

35

Distributed pre-conditioner

Additive Schwarz domain decomposition. Divide-and-conquer
approach to pre-condition a linear system:

Mesh partition. Determine np sub-domains from the graph of
DOFs connections.

the pre-conditioner is:

M�1
=

npX

p=1

RT
p
˜A�1

p Rp,

where
np: is the number of sub-domains (processors)
Rp: restricts a vector to the p-th sub-domain (Boolean matrix)
˜Ap: approximates RpART

p (e.g. its ILU factorization)

16.930 (MIT) Parallelization of the HDG method May 5, 2013 27 / 28

36

Gather and distribute vectors: element vectors

Element vectors (distributed in element sub-domains):

Gather qK , uK from q,u for all K in Th
p

�q, �u Distribute �qK and �uK for all K in Th
p

Each processor p stores the components associated with the
elements in Th

p (element sub-domains)

16.930 (MIT) Parallelization of the HDG method May 5, 2013 29 / 31

37

Gather and distribute vectors: face vectors

Face vectors (distributed in face sub-domains):

ˆu@K from ˆu for all K in Th
p

Gather �ˆu@K from �ˆu for all K in Th
p

Each processor p stores the components associated with the
faces in Ehp (face sub-domains)

A processor a has to receive from a processor b the components
associated with the faces in Ehb that are also in @Th

a

16.930 (MIT) Parallelization of the HDG method May 5, 2013 30 / 31

Parallel HDG
solver (2/2):

partition, overlap and profiling

Parallel and distributed solver: wave scattering

39

Mesh Amplitude (clamped at [-0.1,0.1])Mesh partition (64 blocks)
METIS  

64 processors 

25.3M DOFS
u: 5.2M
q: 15.6M
û: 4.5M

ASDD(l): l-levels of overlap for HDG

40

Face connections 0-levels of overlap 1-level of overlap

3-levels of overlap2-levels of overlap

Overlap for mesh faces

Element / faces partition
(METIS)

ASDD(1) / ILU(0)

Results: how many levels of overlap (ASDD) ?

•Unsteady, Re = 5000, M = 0.1, angle = 3, p = 5, 32 processors

• reduce the number of iterations

• but, slower iterations (memory): 
 x1, x1.1, x1.4, x1.7

• From 0-levels to 1-level: 
ASDD(1) / ILU(0)

41

•Degrees of freedom (DOF):

• local (q, u) = 86.4 M

• global (û) = 19.2 M

• total (q, u, û) = 105.6 M

Profiling HDG linear solve: Re = 20000, M = 0.4, 20 solves

42

Approximation spaces: illustration

Figure : Element and face nodes for a curved mesh with k = 3.

Functions in Mk
h and Mk

h are continuous inside the faces F 2 Eh
and discontinuous at their borders.

Parallel loop. The local problems are independent since nodal basis
functions on an element are connected only to the basis functions of
the surrounding faces.

16.930 (MIT) Parallelization of the HDG method May 5, 2013 6 / 28

Partition: 128 sub-domains

Mesh detail: 480000 elements, p =4, dt = 0.0256

Mesh: 480000 elements

43

Solve local problems (element-wise): 
30% (112 sec / solve) 
86.4 M DOFs 
15.5 billions of nnzs 

Solve global problem (distributed): 
42% (162 sec / solve) 
216 iterations GMRES / ASDD(1) / ILU (0) 
19.2 M DOFs 
1.9 billions of nnzs 
 

Recover local variables (element-wise): 
28% (106 sec / solve) 
86.4 M DOFs

Profiling HDG solve: Re = 20000, M = 0.4, 20 solves, 128 cores

Solve HDG problem:
100% (380 sec / solve) 
105.6 M

Python,
numpy,
TOOI

PyTrilinos
(Sandia NL)

Numerical
examples

3D steady flow, Re = 1000, p = 4, 70K elements

45

with N.C. Nguyen & J. Peraire, AIAA 2013  

3D steady compressible flow, Re = 1000, p = 4, 60K

46

128 processors 

49.6M DOFS
u: 10.2M
q: 30.6M
û: 8.8M

with N.C. Nguyen & J. Peraire, AIAA 2013  

•Steady state requires 
a curved mesh: 
[Bassi & Rebay’97]

• p = 4, curved,  
converges

• p = 4, straight-sided, 
does not converge

Inviscid compressible flow (Euler): M = 0.6, α = 0, p = 4

47

Mesh:
64992 elements
129984 faces 

14M DOFS
u: 11.3M
û: 2.7M 

128 processors  ||Velocity||

•Same space-time resolution:

• high-order captures sound

• low-order dissipates sound

Compressible flow: Re = 20K, M = 0.4, p = 4, dt = 0.06, DIRK(3,3)

48

+ =

000000000

49

Acoustic pressure spectrum

50

1 2
3

4

Probe 1 Probe 2

Probe 3 Probe 4
Pressure  

perturbation

Predict sound spectrum: boundary layer meshes

51
Curved boundary layers: all-acute-tetrahedra

Re = 10K, M = 0.2, p = 4, dt = 0.035, DIRK (3,3) 
40K elements, 75K faces, 128 processors, 
49.6M DOFs (u: 7M, q: 21M, û: 5.6M)

Re = 1M, M = 0.2, p = 4, dt = 0.035, DIRK (3,3) 

Non-resolved boundary layer: artificial recirculation !! Pressure on the panels and density iso-surface
Re = 1M, M = 0.2, p = 6, dt = 0.03, DIRK (3,3)

High-order ILES: captures pressure perturbations

with N.C. Nguyen & J. Peraire

with Gargallo, Sarrate & Peraire'13

Sound spectrum

Summary

•Motivation: high-fidelity simulation

• low dissipation and dispersion, cost, and curved geometries

• The HDG method: suitability to parallelization

• Discontinuous, trace, inner products, local and global DOFs

• Parallel computing overview

•Distributed memory, explicit and implicit, and libraries

• HDG linear systems:

• local and global problems, and structure

52

Summary

•Parallel HDG solver

• parallel pre-conditioner, iterative solver, distribution

• partition, overlap and profiling

• Numerical examples

• Viscous flow, inviscid flow, sound spectrums and curved and
boundary layer meshes

53

Thank you
xevi.roca@bsc.es

 

mailto:xevi.roca@bsc.es

References

•Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied
Mathematics, 2003

• A. George, Nested Dissection of a regular finite-element mesh, SIAM J. Numer. Anal.,
10(2), 1973

• T.A., Davis, Algorithm 832: UMFPACK V4. 3 - an unsymmetric-pattern multifrontal
method, ACM Transactions on Mathematical Software, 30(2), 2004

•O. Schenk, K. Gärtner, Solving unsymmetric sparse systems of linear equations with
PARDISO, Future Generation Computer Systems, 20(3), 2004

• P-O Persson, J. Peraire, Newton-GMRES preconditioning for discontinuous Galerkin
discretizations of the Navier-Stokes equations, SIAM J. Sci. Comp., 30(6), 2008

•References to HDG by B. Cockburn, J. Peraire, N.C. Nguyen, and other authors,
are covered in the other lectures

55

Our references

• Computational cost indicators:
• Angeloski, A; Roca, X; Peraire, J; Huerta, A; Computational cost of simplices versus

parallelotopes for Galerkin methods, 21st International Meshing Roundtable, 2012
• Angeloski, Aleksandar; Peraire, Jaime; Roca, Xevi; Are High-order and Hybridizable

Discontinuous Galerkin methods competitive?, Oberwolfach reports; 1, 9, 2012
• Huerta, Antonio; Angeloski, Aleksandar; Roca, Xevi; Peraire, Jaime; Efficiency of high-

order elements for continuous and discontinuous Galerkin methods, International Journal
for Numerical Methods in Engineering, 96(9), 529-560, 2013

• Parallelization of the hybridizable discontinuous Galerkin method:
• Roca, Xevi; Nguyen, Ngoc Cuong; Peraire, Jaime; GPU-accelerated sparse matrix-vector

product for a hybridizable discontinuous Galerkin method, Aerospace Sciences Meetings.
American Institute of Aeronautics and Astronautics, 2011

• Roca, Xevi; Nguyen, Ngoc C; Peraire, Jaime; Scalable parallelization of the hybridized
discontinuous Galerkin method for compressible flow, 21st AIAA Computational Fluid
Dynamics Conference, 2013

• Fernandez, Pablo; Nguyen, Ngoc-Cuong; Roca, Xevi; Peraire, Jaime; Implicit large-eddy
simulation of compressible flows using the Interior Embedded Discontinuous Galerkin
method, Aerospace Sciences Meetings. American Institute of Aeronautics and
Astronautics, 2016

56

Our references

• Curved meshing:
• Roca, Xevi; Gargallo-Peiró, Abel; Sarrate, Josep; Defining quality measures for high-order

planar triangles and curved mesh generation, Proceedings of the 20th International
Meshing Roundtable, 365-383, 2011

• Gargallo-Peiró, Abel; Roca, Xevi; Sarrate, Josep; Peraire, Jaime; Inserting curved
boundary layers for viscous flow simulation with high-order tetrahedra, 22nd International
Meshing Roundtable, Orlando, Florida, 2013

• Gargallo-Peiró, Abel; Roca, Xevi; Sarrate, Josep; A surface mesh smoothing and
untangling method independent of the CAD parameterization Computational mechanics,
53, 4, 587-609, 2014

• Gargallo-Peiró, Abel; Roca, X; Peraire, J; Sarrate, J; Optimization of a regularized
distortion measure to generate curved high-order unstructured tetrahedral meshes,
International Journal for Numerical Methods in Engineering, 103, 5, 342-363, 2015

• Gargallo-Peiró, Abel; Roca, Xevi; Peraire, Jaume; Sarrate, Josep; A distortion measure to
validate and generate curved high-order meshes on CAD surfaces with independence of
parameterization, International Journal for Numerical Methods in Engineering, 106, 13,
1100-1130, 2016

• Ruiz-Gironés, Eloi; Roca, Xevi; Sarrate, Jose; High-order mesh curving by distortion
minimization with boundary nodes free to slide on a 3D CAD representation, Computer-
Aided Design, 72, 52-64, 2016

57

